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Figure 1: SCANimate. Given a set of raw scans with multiple poses containing self-intersections, holes, and noise (left),
SCANimate automatically aligns all scans to a canonical pose (middle) and learns a Scanimat, a fully animatable avatar that
produces pose-dependent deformations and texture without garment-specific templates or mesh registration (right).

Abstract

We present SCANimate, an end-to-end trainable frame-
work that takes raw 3D scans of a clothed human and turns
them into an animatable avatar. These avatars are driven by
pose parameters and have realistic clothing that moves and
deforms naturally. SCANimate does not rely on a customized
mesh template or surface mesh registration. We observe that
fitting a parametric 3D body model, like SMPL, to a clothed
human scan is tractable while surface registration of the
body topology to the scan is often not, because clothing can
deviate significantly from the body shape. We also observe
that articulated transformations are invertible, resulting
in geometric cycle-consistency in the posed and unposed
shapes. These observations lead us to a weakly supervised
learning method that aligns scans into a canonical pose by
disentangling articulated deformations without template-
based surface registration. Furthermore, to complete
missing regions in the aligned scans while modeling pose-
dependent deformations, we introduce a locally pose-aware
implicit function that learns to complete and model geometry
with learned pose correctives. In contrast to commonly
used global pose embeddings, our local pose conditioning
significantly reduces long-range spurious correlations and
improves generalization to unseen poses, especially when
training data is limited. Our method can be applied to pose-
aware appearance modeling to generate a fully textured
avatar. We demonstrate our approach on various clothing
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types with different amounts of training data, outperforming
existing solutions and other variants in terms of fidelity
and generality in every setting. The code is available at
https://scanimate.is.tue.mpg.de.

1. Introduction
Parametric models of 3D human bodies are widely used

for the analysis and synthesis of human shape, pose, and
motion. While existing models typically represent “mini-
mally clothed” bodies [4, 26, 43, 52, 66], many applications
require realistically clothed bodies. Our goal is to make it
easy to produce a realistic 3D avatar of a clothed person that
can be reposed and animated as easily as existing models like
SMPL [43]. In particular, the model must support clothing
that moves and deforms naturally, with detailed 3D wrinkles,
and the rendering of realistically textured images.

To that end, we introduce SCANimate (Skinned Clothed
Avatar Networks for animation), which creates high-quality
animatable clothed humans, called Scanimats, from raw 3D
scans. SCANimate has the following properties: (1) we learn
an articulated clothed human model directly from raw scans,
completely eliminating the need for surface registration of
a custom template or synthetic clothing simulation data,
(2) our parametric model retains the complex and detailed
deformations of clothing present in the original scans such
as wrinkles and sliding effects of garments with arbitrary
topology, (3) a Scanimat can be animated directly using
SMPL pose parameters, and (4) our approach predicts



pose-dependent clothing deformations based on local pose
parameters, providing generalization to unseen poses.

Recent data-driven approaches have shown promise
for learning parametric models of clothed humans from
real-world observations [39, 46, 54, 56]. However, these
approaches typically limit the supported clothing types
and topology because they require accurate surface regis-
tration of a common template mesh to 3D training scans
[39, 46, 56]. Concurrent work by Ma et al. [45] learns
clothing deformation without surface registration, yet it is
unclear if the method works on raw scans with noise and
holes. Learning from real-world observations is essentially
challenging because raw 3D scans are un-ordered point
clouds with missing data, changing topology, multiple
clothing layers, and sliding motions between the body and
garments. Although one can learn from synthetic data
generated by physics-based clothing simulation [23, 25, 54],
the results are less realistic, the data preparation is time
consuming and non-trivial to scale to the real-world clothing.

To address these issues, SCANimate learns directly from
raw scans of people in clothing. Body scanning is becoming
common, and scans can be obtained from a variety of
devices. Scans contain high-frequency details, capture varied
clothing topology, and are inherently realistic. To make
learning from scans possible, we make several contributions:
canonicalization, implicit skinning fields, cycle consistency,
and implicit shape learning.

Canonicalization and Implicit Skinning Fields. The first
step involves transforming the raw scans to a common pose
so we can learn to model pose-dependent surface defor-
mations (e.g. bulging, stretching, wrinkling, and sliding),
i.e. pose “correctives”. But we are not seeking a traditional
“registration” of the scans to a common mesh topology, since
this is, in general, not feasible with clothed bodies. Instead,
we learn continuous functions of 3D space that allow us to
transform posed scans to a canonical pose and back again.

The key idea is to build this on linear blend skinning
(LBS), which traditionally defines weights on the surface of a
mesh that encode how much each vertex is influenced by the
rotation of a body joint. To deal with raw scans of unknown
topology, we extend this notion by defining skinning weights
implicitly everywhere in 3D space. Specifically, given a
3D location x, we regress a continuous vector function g
represented by a neural network, g(x) : R3 → RJ , which
defines the skinning weights. An inverse LBS function uses
the regressed skinning weights to “undo” the pose of the
body and transforms the points into the canonical space. As
this representation makes no assumptions about the topology
or resolution of input scans, we can canonicalize arbitrary
non-watertight meshes. Furthermore, we can easily generate
animations of the parametric clothed avatar by applying
forward LBS to the clothed body in the canonical pose with
the learned pose correctives.

Cycle Consistency. Despite the desirable properties of
canonicalization, learning the skinning function is ill-posed
since we do not have ground truth training data that specifies
the weights. To address this, we exploit two key observations.
First, as demonstrated in previous work [27, 69, 72], fitting
a parametric human body model such as SMPL [43] to
3D scans is more tractable than surface registration. We
leverage SMPL’s skinning weights, which are defined only
on the body surface, to regularize our more general skinning
function. Second, the transformations between the posed
space and the canonical space should be cycle-consistent.
Namely, inverse LBS and forward LBS together should
form an identity mapping as illustrated in Fig. 3, which
provides a self-supervision signal for training the skinning
function. After training the skinning function, we obtain the
canonicalized scans (all in the same pose).
Learning Implicit Pose Correctives. Given the canoni-
calized scans, we learn a model that captures the pose-
dependent deformations. However a problem remains:
the original raw scans often contain holes, and so do
the canonicalized scans. To deal with this and with the
arbitrary topology of clothing, we use an implicit surface
representation [13, 47, 53]. As multiple canonicalized
scans will miss different regions, with this approach, they
complement each other, while retaining details present in the
original inputs. Furthermore, unlike traditional approaches
[39, 46, 54, 70], where pose-dependent deformations are
conditioned on entire pose parameters, we spatially filter
out irrelevant pose features from the input conditions by
leveraging the learned skinning weights. In this way, we
effectively prune long-range spurious correlations between
garment deformations and body joints, achieving plausible
pose correctives for unseen poses even from a small number
of training scans. The resulting learned Scanimat can be
easily reposed and animated with SMPL pose parameters.

In summary, our main contributions are (1) the first end-
to-end trainable framework to build a high-quality parametric
clothed human model from raw scans, (2) a novel weakly-
supervised formulation with geometric cycle-consistency
that disentangles articulated deformations from the local
pose correctives without requiring ground-truth training data,
and (3) a locally pose-aware implicit surface representation
that models pose-dependent clothing deformation and gen-
eralizes to unseen poses. Our results show that SCANimate
is superior to existing solutions in terms of generality and
accuracy. Furthermore, we perform an extensive study
to evaluate the technical contributions that are critical for
success. The code and example Scanimats can be found at
https://scanimate.is.tue.mpg.de.

2. Related Work

Parametric Models for Human Bodies and Clothing.
Parametric body models [4, 26, 43, 52, 66] learn statistical
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Figure 2: Overview. SCANimate learns a pose-aware parametric clothed human model directly from raw scans in a weakly supervised
manner. The resulting Scanimats can be animated with SMPL pose parameters, producing realistic pose-dependent deformations and texture.

body shape variations and pose-dependent shape correctives
that capture non-linear body deformation and compensate
for linear blend skinning artifacts [3, 30, 37, 38, 41]. While
these approaches achieve high-fidelity and intuitive control
of human body shape and pose, they only focus on bodies
without clothing. Similar ideas have been extended to model
clothed bodies by introducing additional garment layers
[16, 17, 23, 25, 34, 39, 67] or adding displacements or
transformations to the base human body mesh [1, 2, 46, 50,
70]. These parametric clothed human models decompose
garment deformations into articulated deformations and local
deformations such that pose correctives only focus on non-
rigid local deformations. Thus, it is essential to obtain the
inverse skinning transformation [54] by using the surface
registration of a well-defined template [39, 43, 46, 70, 72]
or using synthetic simulation data [15, 23, 25, 54]. However,
these requirements limit the applicability of the approaches
to fairly simple clothing, with a fixed topology, and without
complex interactions between garments and the body.

In contrast, our work uses a weakly supervised approach
to build a parametric clothed human model from raw
scans without the requirement of a template and surface
registration. We canonicalize posed scans and learn an
implicit surface with arbitrary topology [22] conditioned
on pose parameters by leveraging a fitted human body model
to the scan data [5, 8, 69, 71, 72]. Moon et al. [49] similarly
propose a weakly supervised method for learning a fine-
grained hand model from scan data by deforming a fitted
base hand model [58]; the approach is non-trivial to extend
to human clothing with varying topology.

The most related work to ours is Neural Articulated Shape
Approximation (NASA) [18], where the composition of
occupancy networks [13, 47] articulated by the fitted SMPL
model are directly learned from posed scans in the same
spirit as structured implicit functions [20, 21]. Concurrent
work, LEAP [48], extends a similar framework to a multi-
subject setting. Through an extensive study in Sec. 4.1, we
find that the compositional implicit functions proposed in
[18] are more prone to artifacts and less generalizable to
unseen poses than our LBS-based formulation.
Pose Canonicalization via Inverse LBS. The key to suc-
cessful canonicalization is learning transformations in the

form of skinning weights in a continuous space. Learning
skinning weights for varied topologies has become possible
using neural networks with graph convolutions [7, 42, 68].
Given a neutral-posed template, these networks predict
skinning weights together with a skeleton [68] or pose-
dependent deformations [7]. While they predict skinning
weights on a neutral-posed template in a fully supervised
manner, our problem requires learning skinning weights, not
only on the surface mesh, but in both the canonical and posed
space without ground-truth skinning weights.

Extending LBS skinning weights from an underlying
body model to the continuous space is used in the data
preparation step of ARCH [29] and LoopReg [9]. However,
in these approaches, the skinning weights are uniquely
determined by the underlining body and not learnable. We
argue, and experimentally demonstrate, in Sec. 4.1 that
jointly learning skinning weights leads to visually pleasing
canonicalization while maximizing the reproducibility of
input scans by the reconstructed parametric model. Inspired
by recent unsupervised methods using cycle consistency
[12, 75], we leverage geometric cycle consistency between
the canonical space and posed space to learn skinning
weights in a weakly supervised manner without requiring
any ground-truth training data. Concurrent work, FTP [65],
proposes a similar idea but is limited to body modeling;
instead, we extend the traditional LBS to the entire 3D space
and enable clothing surface modeling.
Reconstructing Clothed Humans. Reconstructing humans
from depth maps [14, 64, 71], images [11, 32, 36], or video
[33, 35] is also extensively studied. While many works focus
on the minimally clothed human body [11, 24, 32, 36, 40],
recent approaches show promise in reconstructing clothed
human models from RGB inputs using the SMPL mesh with
displacements [1, 2, 74], external garment layers [10, 31],
depth maps [19, 62], voxels [63, 73], or implicit functions
[29, 59, 60]. However, these approaches do not learn, or
infer, pose-dependent deformation of garments, and simply
apply articulated deformations to the reconstructed shapes.
This results in unrealistic pose-dependent deformations
that lack garment specific wrinkles. Our work differs by
focusing on learning pose-dependent clothing deformation
from scans.
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Figure 3: Canonicalization with cycle consistency. The
geometric cycle consistency loss, with the guidance from the
underlining body model, leads to successful canonicalization.

3. Method
Figure 2 shows an overview of our pipeline. The

input is a set of raw 3D scans of a person in clothing,
together with fitted minimally clothed body models. Here
we use the SMPL model [43] fit to the scans to obtain
body joints and blend skinning weights, which we exploit
in learning. Given the input, we first learn bidirectional
transformations between the posed space and canonical
space by predicting skinning weights as a function of space
coordinates (Sec. 3.1). To address the lack of ground truth
correspondence of the scan data, we leverage geometric cycle
consistency to learn continuous skinning functions. The raw
scans are canonicalized with the learned bidirectional trans-
formations. We further learn a locally pose-aware signed
distance function, parameterized by a neural network, from
canonicalized scans using implicit geometric regularization
[22] (Sec. 3.2). For implementation details, including hyper
parameters and network architectures, see the Sup. Mat.

3.1. Canonicalization

Instead of a traditional skinning scheme that assigns a
skinning weight vector w ∈ RJ , where J is the number of
joints, to each point on a surface, we extend the notion of
skinning using a continuous function: we train a model that
takes any point in the space as input and outputs its skinning
weight vector w. Figure 3 illustrates the principles. We
specifically focus on points from two surfaces, the clothing
surface X and the body surface B. To be more specific
about the canonicalization step, let us first define the posed
space and the canonical space. The posed space is defined
for each scan, and the canonical space is shared across all
the scans. Let Xs

i = {xs ∈ R3} be vertices on the original

scan in the posed space, where i is the frame index of the
scans, and Xc

i = {xc ∈ R3} be vertices on the unposed
scans in the canonical space, which are not known. Now
we seek a mapping function that aligns the posed scans
in a canonical pose. While the mapping function can be
arbitrarily defined, we observe that this can be formulated
as a composition of the known rigid transformations of body
joints, Ti = {Ti

j ∈ SE(3), j = 1, . . . , J}, which come
from the fitted SMPL model. More specifically, given a
set of blending weights w, we define linear blend skinning
(LBS) and inverse linear blend skinning (LBS−1) functions
as follows:

Xp
i = LBSTi

(Xc
i ,w(Xc

i )) = (
∑

wjTi,j)X
c
i

Xc
i = LBS−1

Ti
(Xs

i ,w(Xs
i )) = (

∑
wjTi,j)

−1Xs
i ,

(1)

where Xp
i = {xp ∈ R3} are the vertices of the reposed

scans and ideally should have the same value as Xs
i . The

LBS function maps arbitrary points in the canonical space
to the posed space represented by Ti and the inverse LBS
function maps points in the posed space to the canonical
space. In other words, the equations above show that given
skinning weights w on vertices, we can not only apply any
pose to the canonicalized shapes as in a traditional character
animation pipeline [41], but also transform back the posed
shapes into the canonical space.
Implicit Skinning Fields. In contrast to traditional ap-
plications, where the skinning weights for each point
are predefined, either by artists or by automatic methods
[6, 29, 70], skinning weights on the raw scan data are
not known a priori. Fortunately, we can learn them in
a weakly supervised manner, such that all the scans can
be decomposed into articulated deformations and non-rigid
deformations.

To this end, we introduce two neural networks called the
forward skinning net and the inverse skinning net:

w(xci ) = gcΘ1
(xci ) : R3 → RJ

w(xsi ) = gsΘ2
(xsi , z

s
i ) : R3 × RZs → RJ ,

(2)

where zsi represents a latent embedding, and Θ1 and Θ2

are the learnable parameters of the multilayer perceptrons
(MLP), which we omit below for notational brevity. The
forward skinning net predicts LBS skinning weights of
queried 3D locations in the canonical space. Similarly, the
inverse skinning net predicts skinning weights in the posed
space of each training scan. Notably, this continuous repre-
sentation is advantageous over other alternatives including
fully connected networks and graph convolutional networks
[42, 46, 57] as it does not depend on a fixed number of
vertices or predefined topology. Empirically we observe that
jointly learning zsi in an auto-decoding fashion [53] leads to
superior performance compared to taking pose parameters
as input; see Sup. Mat. for discussion.

By combining Eq. 1 and 2, we can compute the mappings



between the canonical and posed spaces via:

xpi = LBSTi
(xci , g

c(xci ))

xci = LBS−1
Ti

(xsi , g
s(xsi , z

s
i )).

(3)

Note that these functions are differentiable.
Learning Skinning. To successfully train gc(·) and gs(·)
without ground truth weights on the scans, we leverage two
key observations: (1) the regions close to the human body
model are highly correlated with the nearest body parts
where ground-truth skinning weights are available; (2) any
points in the posed space should be mapped back to the same
points after reapplying LBS to the canonicalized points. To
utilize (1), we use the underlying SMPL body model’s LBS
skinning weights as guidance for the canonical and posed
space. More specifically, gs(·) and gc(·) at points on the
scans are loosely guided by the nearest neighbor point on
the body model and its SMPL skinning weights, propagating
skinning weights from body models to the input scans.

Most importantly, observation (2) plays a central role in
the success of the weakly supervised learning. It allows us to
formulate cycle consistency constraints, updating both gc(·)
and gs(·) such that wrongly associated skinning weights that
break the cycle consistency are highly penalized. Our evalu-
ation in Sec. 4.1 shows that the cycle consistency constraints
are critical to decompose articulated deformations. Note
that the jointly learned gc(·) is used to learn and animate the
pose-aware clothed human model (see Sec. 3.2).

Our final objective function is defined as:

Ecano(Θ1,Θ2, {zsi}) =∑
i

(λBEB + λSES + EC + ER), (4)

where EB and ES are body-guided loss functions, EC is
based on cycle consistency, and ER is a regularization term.
EB ensures gc(·) and gp(·) predict SMPL skinning weights
on the body surface by

EB =
∑

bc
i∈Bc

i

‖gc(bci )−w′(bci )‖

+
∑

bs
i∈Bs

i

‖gs(bsi , zsi )−w′(bsi )‖,
(5)

where Bc
i = {bci ∈ R3} and Bs

i = {bsi ∈ R3} are vertices
on the canonical and posed body surfaces, and w′(·) are the
SMPL LBS weights. See Sup. Mat. for details to obtain Bc

i .
Similarly, ES is the regression loss between the predicted
weights and the LBS weights on the nearest neighbor body
vertex:

ES =
∑

xs
i∈Xs

i

(‖gs(xsi , zsi )−w′(argmin
bs
i∈Bs

i

d(xsi , b
s
i ))‖

+ ‖gc(xci )−w′(argmin
bs
i∈Bs

i

d(xsi , b
s
i ))‖). (6)

Note that this nearest neighbor assignment is also used in

[29] for training data preparation. However, in Sec. 4.1,
we show that this alone is prone to inaccurate assignments,
causing severe artifacts.

We facilitate cycle consistency with two terms. EC′

directly constrains the consistency of skinning weights
between the canonical space and the posed space, and EC′′

facilitates cycle consistency on the vertices of the posed
meshes as follows:

EC = λC′EC′ + λC′′EC′′ (7)

EC′ =
∑

xs
i∈Xs

i

‖gs(xsi , zsi )− gc(xci )‖ (8)

EC′′ =
∑

xs
i∈Xs

i

‖xpi − xsi‖. (9)

Notice that cycle consistency can hold only if we start from
the posed space since points in the canonical space can be
mapped to the same location in case of self-intersection.

Lastly, our regularization term consists of a sparsity
constraint ESp, a smoothness term ESm, and a statistical
regularization on the latent code EZ as follows:

ER = λSpESp + λSmESm + λZEZ , (10)

ESp =
∑
xs

i

|gs(xsi , zsi )|β β = 0.8, (11)

ESm =
∑

e∈E/C

‖gs(e1, z
s
i )− gs(e2, z

s
i )‖, (12)

EZ = ‖zpi ‖
2
2, (13)

where e = (e1, e2), E is the set of edges on the triangulated
scans and we mask out concave regions C so that skinning
weights are not propagated across merged body parts due to
self-intersection (See Sup. Mat. for details.).

After training, we canonicalize all the scans by applying
the inverse LBS transform (Eq. 3) to all vertices on the
scans. By eliminating triangles with large distortion (see
Sup. Mat. for details), we obtain the canonical scans used to
learn a pose-aware parametric clothed human model.

3.2. Locally Pose-aware Implicit Shape Learning

Given the canonicalized partial scans together with the
learned skinning weights, we learn a parametric clothed
human model with pose-aware deformations. To this end,
we base our shape representation on an implicit surface
representation [13, 47, 53] as it supports arbitrary topology
with fine details. However, real scans have holes and
such partial scans cause difficulty obtaining ground truth
occupancy labels since the meshes are not water-tight. To
handle partial scans as input, we learn a signed distance
function fΦ(x) based on a multilayer perceptron (for brevity,
we omit the network parameters Φ), using implicit geometric
regularization (IGR) [22] by minimizing the following



objective function:

Eshape(Φ) =
∑
i

(ELS + λigrEIGR + λoEO) (14)

ELS =
∑

x∈X′c
i

(|f (x)|+ ‖∇xf (x)− n(x)‖) , (15)

EIGR = Ex (‖∇xf(x)‖ − 1)
2
, (16)

EO = Ex (exp(−α · |f (x)|)) α� 1, (17)

where ELS ensures the zero level-set of the predicted SDF
lies on the given points with its surface normal aligned
with that of the input scans, n(x). EIGR is the Eikonal
regularization term that regularizes the function f to satisfy
the Eikonal equation ‖∇xf(·)‖ = 1. EO regularizes
off-surface SDF values from being close to the level-set
surface as in [61]. Remarkably, this formulation does not
require ground truth signed distance for non-surface points
and naturally fills in the missing regions by leveraging the
inductive bias of multilayer perceptrons as shown in [22].

To learn pose-dependent deformations of clothing, we
could condition the function f with the pose features
θ ∈ RJ×4 (we use quaternions as in [52]). However, the
straightforward approach of concatenating the pose features
with Cartesian coordinates, namely f(x, θ), suffers from
overfitting due to the limited pose variations in the training
data and spurious correlations between joints. Since the
relationship between body joints and clothing deformation
tends to be non-local [67], it is also important to limit the
influence of irrelevant joints to reduce spurious correlations
[52]. Thus, we need an attention mechanism to associate
spatial locations with only the relevant pose features. To this
end, we modify the function f :

f(x, (W · gc(x)) ◦ θ),W ∈ RJ×J , (18)

where gc(·) is the skinning network learned in Sec. 3.1,
W is the weight map that converts skinning weights into
pose attention weights, and ◦ denotes element-wise product.
Specifically, if we want a 3D point that is skinned to the nth

joint with non-zero skinning weights to pay attention to the
mth joint, Wm,n and Wn,m are set to 1, otherwise, they are
set to 0. The weight map is essential because the movement
of one joint will be propagated to regions associated with
neighboring body joints (e.g. raising the shoulders lifts up
an entire T-shirt). In this paper, we set Wn,m = 1 when nth

joint is within 4-ring neighbors of mth joint in the kinematic
tree. By reducing spurious correlations, our formulation
significantly reduces over-fitting artifacts given a set of
unseen poses, demonstrating better generalization ability
even with a small number of input scans (see Sec. 4.1).

4. Experimental Results
Dataset and metric. For evaluation and comparison with
baseline methods, we use the CAPE dataset [46], which

includes raw 3D scan sequences and SMPL model fits.
We evaluate generalization to unseen poses with both pose

interpolation (denoted as Int. in tables) and extrapolation
tasks (denoted as Ex. in tables). The motion sequences are
randomly split into training (80%) and test (20%) sets, where
the test sequences are used to evaluate extrapolation. For
the training sequences, we choose every 10th frame starting
from the first frame as training scans and every 10th frame
with 5 frame strides from the training sequences for the
interpolation evaluation. We perform Marching Cubes [44]
to the predicted implicit surface in canonical space as in
Eq 18 and then pose it by forward LBS in Eq. 1 to get the
resulting meshes. For quantitative evaluation, we use scan-
to-mesh distance Ds2m (cm) and surface normal consistency
Dn, where a nearest neighbor vertex on the resulting meshes
is used to compute the average L2 norm.

In addition, we conduct a perceptual study to assess
the plausibility score, P , of generated garment shapes and
deformations. Workers on Amazon Mechanical Turk (AMT)
are given a pair of side-by-side images or videos showing
a rendered result from our approach and another approach;
the left-right order of the results is randomized. The task
is to choose the result with the most realistic clothing. We
continue this N times and compute the probability of the
other approach being favored P = M/N , where M is how
many times the users chose the other method over ours. In
other words, we set our approach as baseline with a constant
score P = 0.5; for other approaches, if P < 0.5, ours
achieves higher fidelity. The perceptual score for image and
video pairs is denoted as Pi and Pv, respectively. While Pi
focuses on the plausibility of static clothing, Pv reveals the
temporal consistency and realism of pose-dependent clothing
deformations. Note that we provide only the perceptual
scores for the extrapolation task as numerical evaluation is
difficult due to the stochasticity of clothing deformations.

4.1. Evaluation
Canonicalization. The goal of canonicalization is to
disentangle articulated deformations from other non-rigid
deformations for effective shape learning. We choose two
baseline approaches to replace our canonicalization module.
The first, as used by [29], copies skinning weights on the
clothed scans from the nearest neighbor body vertex. The
other approach is based on weighted correspondences by
interpolating skinning weights from the k-nearest neighbors
(we use k = 6) in the spirit of [70]. This reduces the
impact of a wrong clothing-body association that limits the
performance of single nearest neighbor assignment.

Figure 4 shows that the two baseline methods break the
cycle consistency with wrong associations of the skinning
weights, resulting in noticeable artifacts. The inaccurate
canonicalization results are propagated to the parametric
model learning, substantially degrading the quality of
reconstructed avatars as shown in Tab. 1. Our approach with



Table 1: Quantitative comparison of canonicalization. As
the perceptual score is pair-wise and compared against ours,
we put 0.5 for the proposed approach throughout the tables.
Ds2m is in centimeters throughout the tables.

Ours NN [29] KNN

Int.

Ds2m ↓ 0.570 1.25 1.25
Dn ↓ 0.253 0.301 0.299
Pi ↑ 0.5 0.374 0.396
Pv ↑ 0.5 0.435 0.431

Ex.
Pi ↑ 0.5 0.262 0.312
Pv ↑ 0.5 0.392 0.449

Ground truth Ours NN KNN
Figure 4: Qualitative comparison on canonicalization. Top:
canonicalization results. Bottom: reposed canonicalization results.
Compared with our method, the baseline methods suffer from
severe artifacts.

cycle consistency successfully normalizes the input scans
into a canonical pose while retaining coherent geometric
details, enabling the parametric modeling of clothed avatars.
Locally Pose-aware Shape Learning. We evaluate our
local pose representation using the learned skinning weights
for pose-dependent shape learning and compare against
commonly used global pose conditioning [18, 39, 46, 54, 70].
To this end, we replace the second input of Eq. 18 with
the global pose parameter, θ, as a baseline. To assess the
generalization ability, both models are trained on 100%,
50%, 10% and 5% of the original training set.

Table 2 shows that our local pose conditioning achieves
better reconstruction accuracy and fidelity for both inter-
polation and extrapolation. Note that the performance of
global pose conditioning drastically degrades when the
training data is reduced to less than 10%, suffering from
severe overfitting. In contrast, our approach keeps roughly
equivalent reconstruction accuracy even when only 5% of
the original training data is used, exhibiting few noticeable
artifacts (see Fig. 5).
Comparison with SoTA. We compare the proposed method
with two state-of-the-art methods that also learn an ar-
ticulated parametric human model with pose correctives
from real world scans [18, 46]. CAPE [46] learns pose-
dependent deformations on a fixed mesh topology using

Table 2: Quantitative evaluation of the importance of locality
in the pose conditioning on different sizes of training data.

Train size (%) 100 50 10 5
Local pose conditioning (Ours)

Int.

Ds2m ↓ 0.570 0.663 0.699 0.732
Dn ↓ 0.253 0.253 0.261 0.268
Pi ↑ 0.5 0.476 0.466 0.398
Pv ↑ 0.5 0.453 0.435 0.425

Ex.
Pi ↑ 0.5 0.429 0.359 0.359
Pv ↑ 0.5 0.408 0.408 0.343

Global pose conditioning

Int.
Ds2m ↓ 0.768 0.786 1.54 2.38
Dn ↓ 0.253 0.256 0.293 0.354
Pi ↑ 0.424 0.393 0.350 0.252
Pv ↑ 0.468 0.457 0.363 0.301

Ex.
Pi ↑ 0.417 0.401 0.291 0.192
Pv ↑ 0.436 0.382 0.311 0.203

100% 50% 10% 5%
Figure 5: Evaluation of pose encoding with different sizes of
training data. Top row: our local pose encoding. Bottom row:
global pose encoding. While the global pose encoding suffers from
severe overfitting artifacts, our local pose encoding generalizes well
even if data size is severely limited.

graph convolutions [57], but requires surface registration
for training. NASA [18], on the other hand, can be learned
without registration but needs to determine occupancy values.
We train both methods using registered CAPE data. Table
3 shows that our approach achieves superior reconstruction
accuracy and perceptual realism, while Fig. 6 illustrates
limitations of the prior methods. As CAPE relies on a
template mesh with a fixed topology, the reconstructions
are not only less detailed but also fail to capture topological
changes such as the lifting up of the jacket. While NASA
can model pose-dependent shapes using articulated implicit
functions, discontinuites and ghosting artifacts are visible,
as the implicit functions of each body part are learned
independently, which limits generalization to unseen poses.
In contrast, our approach can produce highly detailed and



Table 3: Comparison with the state-of-the-art pose-aware
shape modeling methods.

Ours CAPE [46] NASA [18]

Int.

Ds2m ↓ 0.570 0.970 1.12
Dn ↓ 0.253 0.308 0.289
Pi ↑ 0.5 0.268 0.432
Pv ↑ 0.5 0.455 0.457

Ex.
Pi ↑ 0.5 0.214 0.343
Pv ↑ 0.5 0.422 0.395

Ours CAPE [46] NASA [18]

Figure 6: Comparison with the SoTA methods. We show qual-
itative results on the extrapolation task, illustrating the advantages
of our method as well as the limitations of the existing approaches.

globally coherent pose-dependent deformations without
template-registration.
Learning a Fully Textured Avatar. We extend our pose-
aware shape modeling to appearance modeling by predicting
texture fields [51, 59]; see Sup. Mat. for details. Figure 7
shows that high-resolution texture can be modeled without
2D texture mapping, which illustrates another advantage of
eliminating the template-mesh requirement.

5. Discussion and Future Work

We introduced SCANimate, a fully automatic framework
to create high-quality avatars (Scanimats), with realistic
clothing deformations, driven by pose parameters, that are
directly learned from raw 3D scans. Our experiments show
that decomposing articulated deformations from scanned
data is now possible in a weakly supervised manner by
combining body-guided supervision with cycle-consistency
regularization. Previously, the difficulty of accurate and
coherent surface registration limited the field from analysing
and modeling complex clothing deformations involving

Figure 7: Textured Scanimats. Our method can be extended to
texture modeling, allowing us to automatically build a Scanimat
with high-resolution realistic texture.

multiple garments from real-world observations. Our
approach enables, for the first time, learning of physically
plausible clothing deformations from raw scans, unlocking
the possibility of realistic avatar learning from data.
Limitations and Future Work. The current representation
works well for clothing that is topologically similar to the
body. The method may fail for clothing, like skirts, that
deviates significantly from the body; see Sup. Mat. for an
example. Clothing wrinkles tend to be stochastic; that
is, for a specific pose, they may differ depending on the
preceding sequence of poses. The current model, however, is
deterministic. Future work should factor the surface texture
into albedo, shape, and lighting enabling more realistic
relighting of Scanimats. Additionally, an adversarial texture
loss [28] could improve visual quality. Here we model a
person in a single garment. Learning a generative model with
clothing variety should be possible but will require training
data of varied clothing in varied poses. Most exciting is
the idea of fitting Scanimats to, or even learning them from,
images or videos. Finally, extending this approach to model
hand articulation and facial expressions should be possible
using expressive body models like SMPL-X [55].
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