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1. Implementation details

1.1. Network Architectures

Our forward and inverse skinning networks are based
on multi-layer perceptrons, where the intermediate neuron
size is (256, 256, 256, 24) with a skip connection from the
input feature to the 2nd layer, and nonlinear activations
using LeakyReLU except the last layer that uses softmax to
obtain normalized skinning weights. As an input, we take
the Cartesian coordinates of a queried location, which is
encoded into a high dimensional feature using the positional
encoding [6] with up to 6-th and 8-th order Fourier features
for the forward skinning net gcΘ1

(·) and the inverse skinning
net gsΘ2

(·), respectively. Note that the inverse skinning net
gsΘ2

(·) takes a latent embedding zs
i ∈ R64 as an additional

input in order to learn the skinning weights of scans in
different poses.

To model the geometry of clothed humans in a canonical
pose, we also use a multi-layer perceptron fΦ(·), where the
intermediate neuron size is (512, 512, 512, 343, 512, 512, 1)
with a skip connection from the input feature to the 4th
layer, and nonlinear activations using softplus with β = 100
except the last layer as in [2]. The input feature consists of
the Cartesian coordinates of a queried location, which are
encoded using the positional encoding of up to 8-th order
Fourier features, and the localized pose encoding in R92.
The texture inference network uses the same architecture
as the geometry module fΦ(·) except the last layer with 3
dimensional neurons for color prediction, and the input layer
replaced with the concatenation of the same input and the
second last layer of fΦ(·) so that the color module is aware
of the underlying geometry.

1.2. Training Procedure

Our training consists of three stages. First, we pretrain
gcΘ1

(·) and gsΘ2
(·) with the following relative weights: λB =

10.0, λS = 1.0, λC′ = 0.0, λC′′ = 0.0, λSp = 0.001,
λSm = 0.0, and λZ = 0.01. After pretraining, we jointly
train gcΘ1

(·) and gsΘ2
(·) using the proposed cycle consistency

constraint with the following weights: λB = 10.0, λS = 1.0,
λC′ = 1.0, λC′′ = 1.0, λSp = 0.001, λSm = 0.1, and

λZ = 0.01. We multiply λC′′ by 10 for the second half
of the training iterations. For the two stages above, we use
6890 points of the SMPL vertices and 8000 points uniformly
sampled on the scan data, which is dynamically updated at
every iteration.

Once the training of the skinning networks is complete,
we fix the weights of gcΘ1

(·), gsΘ2
(·), and {zs

i}, and train the
geometry module fΦ(·) with the following hyper parameters:
λigr = 1.0, λo = 0.1, and α = 100. To compute ELS , we
uniformly sample 5000 points on the scan surface at each
iteration. We compute EIGR by combining 2000 points
within a bounding box and 10000 points perturbed with the
standard deviation of 10cm from the surface geometry, half
of which is sampled from the scans and the remaining from
the SMPL body vertices. Note thatEO uses only 2000 points
sampled from the bounding box to avoid overly penalizing
zero crossing near the surface.

We train each stage with the Adam optimizer with
learning rates of 0.004, 0.001, and 0.001, respectively. They
are decayed by the factor of 0.1 at 1/2 and 3/4 of the training
iterations. The first stage runs for 80 epochs and the second
for 200 epochs.

1.3. Texture Inference

To model texture on the implicit surface, we model texture
fields parameterized by a neural network, denoted as f c(x) :
R3 → R3, following [7, 9]. Given the ground-truth color
c(x) at a location x on the surface, we learn the network
weights of f c(·) by minimizing the L1 reconstruction loss:
|f c(x)− c(x)|. We sample 5000 points from the input scans
at every iteration and optimize using the Adam optimizer
with a learning rate of 0.001 and the same decay schedule as
the geometry module. We train the texture module for 1.8M
iterations.

1.4. Other Details

Concave region detection. We exclude concave regions
from the smoothness constraint to avoid propagating incor-
rect skinning weights at the self-intersection regions. We
detect them by computing the mean curvature on the surface
of scans with the threshold of 0.2. Note that while we



empirically find our detection algorithm is sufficient for our
training data, utilizing external information such as body
part labels is possible when available to improve robustness.

Obtaining canonical body. The canonicalized body Bc
i

in Eq. (5) is a body model of the subject in a canonical
pose with pose dependent deformations. We obtain the pose
correctives by activating pose-aware blend shapes in the
SMPL model [3] given the body pose θ at frame i.

Removing distorted triangles. When the input scans are
canonicalized, triangle edges that belong to self-intersection
regions are highly distorted. As these regions must be
separated in the canonical pose, we remove all triangles
for which any edge length is larger than its initial length
multiplied by 4.

2. Discussion
2.1. Latent Autodecoding

The purpose of learning gs(·, z) is to stably canonicalize
raw scans. To this end, we use auto-decoding z as in
[8] for the following advantages. Auto-decoding self-
discovers the latent embedding z such that the loss function
is minimized, allowing the network to better distinguish each
scan regardless of the similarity in the pose parameters. Thus,
z can implicitly encode not only pose information but also
anything necessary to distinguish each frame. Furthermore,
due to no dependency on pose parameters, auto-decoding
is more robust to the fitting error of the underlying body
model. As a baseline we replace autodecoding by regressing
skinning weights on pose parameters of a fitted SMPL body.
We use the energy function Ecano in Eq. (4) without the
term of EZ to evaluate the performance of the two. While
pose regression results in 0.043, autodecoding achieves
a much lower local minimum at 0.025, showing superior
performance against the baseline.

2.2. Combining Skinning Networks

As in Eq. (2) in the main paper, gc and gs are formulated
separately. This is in accordance with the idea of predicting
skinning weights for both forward and backward transforma-
tions. However, if one considers the skinning networks in
another point of view, particularly when regarding them
as mappings from 3D space coordinates conditioned on
different frames to skinning weights, it is clear that gc is
a special case of gs. Thus in practical implementation, one
can either set up two networks corresponding to gc and gs,
respectively, or set up a single networks in an autodecoder
manner with a single common latent vector zc for all the
forward skinning weights prediction and per-frame latent
vectors zs

i for inverse skinning weights prediction in each
posed frame.

Canonicalized scan (frontal) Zoomed-in view on skirt

Canonicalized scan (back) Zoomed-in view on skirt

Predicted reposed scan Ground truth posed scan

Figure 1: Failure cases of canonicalizing a clothed human
with a synthetic skirt. We show surface triangles in the
zoomed-in images to highlight the severe stretching artifacts
of the skirt between legs.

2.3. Failure cases.
As mentioned in the main paper, while the current

pipeline performs well for clothing that is topologically
similar to the body, the method may fail for clothing, like
skirts, whose topology may deviate significantly. Fig. 1
shows a failure case of canonicalizing a person with a skirt
synthetically generated using a physics-based simulation.
The SMPL-guided initialization of skinning weights fails
recovering from poor local minima. We leave for future
work a garment-specific tuning of hyperparameters and more
robust training schemes for various clothing types.



2.4. CAPE Dataset Limitation.
Some frames of the CAPE

dataset [4] contain erroneous body
fitting around the wrists and ankles,
as shown in the right inset figure,
resulting in unnecessary distortions
around the regions. Due to the
smoothness regularization in our
method, such a distortion can be
propagated to the nearby regions, and hence a larger region
may be discarded. However, the proposed shape learning
method complements such a missing region from other
canonicalized scans, and our reconstructed Scanimats do
not suffer from the small errors in pose fitting.

3. Additional Qualitative Results
Locally Pose-aware Shape Learning. Fig. 2, an extended
Figure of Fig. 5 in the main paper, shows more qualitative
comparison on pose encoding with different sizes of training
data.

100% 50% 10% 5%
Figure 2: Evaluation of pose encoding with different sizes of
training data. Top row: our local pose encoding. Bottom row:
global pose encoding. While the global pose encoding suffers from
severe overfitting artifacts, our local pose encoding generalizes well
even if data size is severely limited.

Comparison with the SoTA methods. Fig. 3, an ex-
tended Figure of Fig. 6 shows more qualitative comparison
with the SoTA methods.

Ours CAPE [5] NASA [1]

Figure 3: Comparison with the SoTA methods. We show qual-
itative results on the extrapolation task, illustrating the advantages
of our method as well as the limitations of the existing approaches.

Textured Scanimats Fig. 4, an extended Figure of Fig. 7,
shows more examples of textured Scanimats.

Figure 4: Textured Scanimats. Our method can be extended to
texture modeling, allowing us to automatically build a Scanimat
with high-resolution realistic texture.

Please watch the video at https://scanimate.is.
tue.mpg.de for animated results.
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